

cherenkov telescope array

### **Thesis Day**

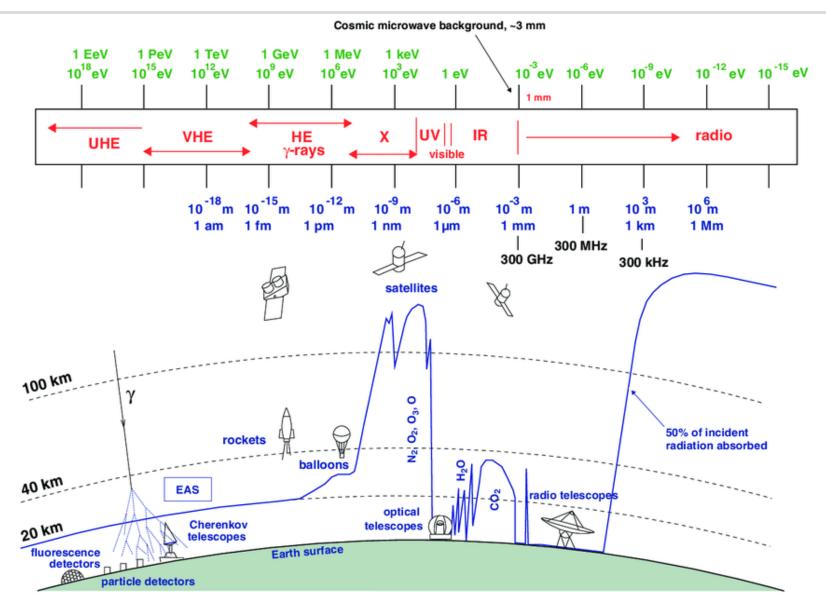
Roberta Zanin on behalf of the CTA Bologna group (Stefano Marchesi, Paolo da Vela, Eleonora Torresi, Paola Grandi, Massimo Cappi, Cristian Vignali...) February 5, 2024

### What is CTAO?

#### have you ever consider to ask for a thesis on CTAO?

#### 3 motivations to carefully listen to this talk and consider CTA as beginning of your scientific career

#### 1. Astronomy


many of the main open questions in physics are related to astronomy

- Very-high-energy gamma-ray astronomy

   → astroparticle: the Universe is our particle factory and the Earth's atmosphere as calorimeter
- 3. CTAO all the community joins to make a giant leap forward CTAO : VHE astronomy = LEP/SPS : particle physics

#### Very-high-energy astronomy







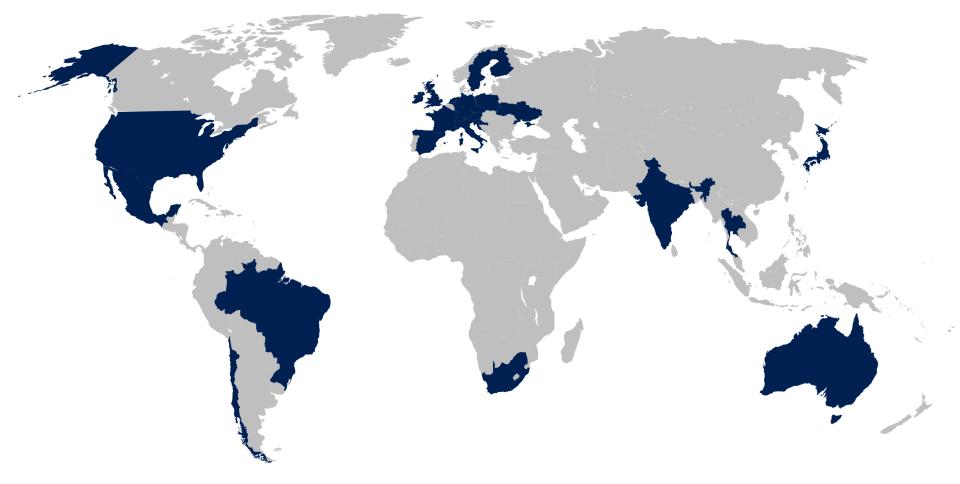


# 13 telescopes CTA North Delation of the delated o

#### **51 telescopes**

**CTA South** ESO, Chile

TRU














world-wide community: many interesting possibility to set up exchange programs with several countries, especially within Europe.

### **CTA-group in Bologna**



#### A transversal group

- CTAO HQs where the entire project is managed: construction, operations and science organization
   *R. Zanin*
- **DIFA** extragalactic high-energy experts *Prof. M. Brusa, S. Marchesi , Prof. C.Vignali*
- OAS software developers, extragalactic and galactic high-energy experts
   A. Bulgarelli, M. Cappi, A. Comastri, P. da Vela, V. Fioretti, P. Grandi, E. Torresi, V. Sguera
   + 5 Ph.D. students: E. Bronzini, G. Brunelli, C. Nanci, G. Panebianco, A.

#### Perfect timing to join



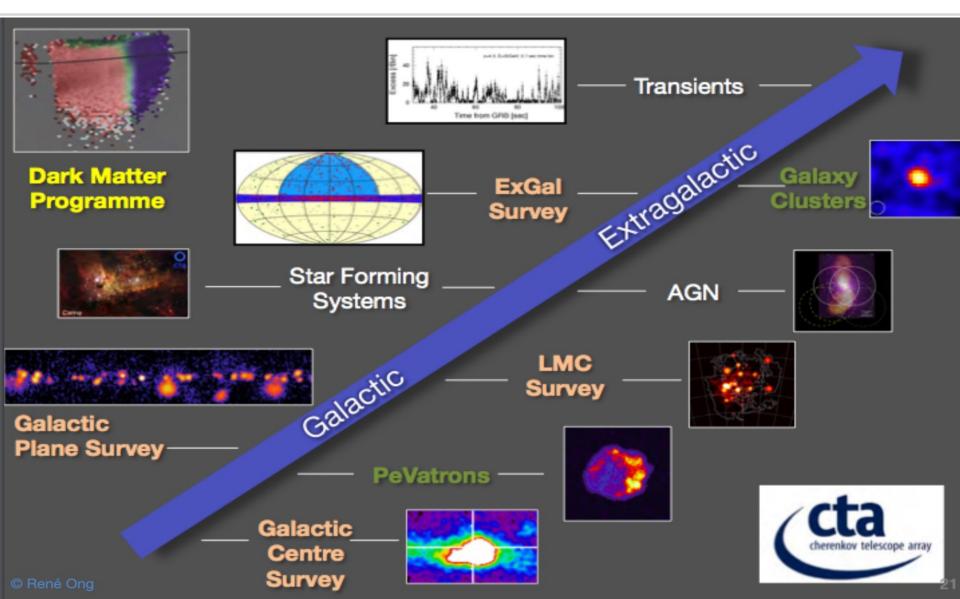


#### Perfect timing to join



First telescope already taking data

#### $\rightarrow$ hands on real data


tens of other telescope will take the first data in the coming years





#### **CTAO science**





### First scientific results of LST1



analysis and results interpretation of VHE-emitting blazars detected by LST-1



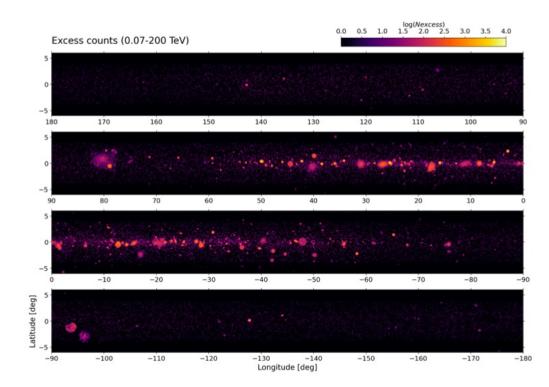
 Search for VHE emission from Galactic transients and/or gamma-ray binaries in the LST-1 data

The candidate will become member of the LST collaboration and as such will have access to the LST1 data learning:

- to analyze VHE gamma-ray data both low- and high-level analysis
- to interpret the results addressing specific questions of the considered science case
- to insert the obtained results in a multi-wavelength context
- to present the results to the collaboration






### **CTAO Science data challenge**



- use the GRB templates used to simulate GRB events to study CTAO capability of detecting GRBs as a function of different physical and observational parameters, with a clear focus during the construction phase
- CTAO capabilities in spatial-dependent spectroscopy using simulated data of extended source like the Cygnus Cocoon

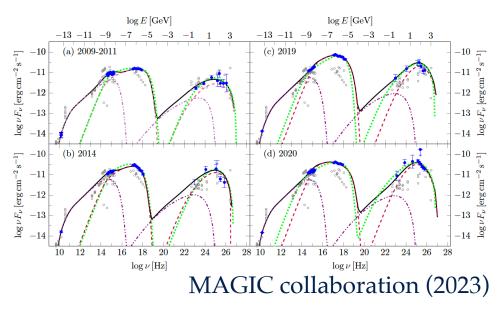
#### The candidate will learn:

- to simulate VHE gamma-ray data preparing the physical model and convolving it with the instrument response
- to analize VHE gamma-ray data with gammapy
- to interpret the obtain results and understand the capability that CTAO will have in exploiting the two science cases
- to present the results to the CTA scientific collaboration

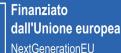




Finanziato dall'Unione europea NextGenerationEU






#### Towards a public archive of extragalactic sources studied by MAGIC

- During the years, MAGIC Cherenkov telescope has studied a significant number of extragalactic sources in the most extreme energy range.
- However, as of today, no public archive for both TeV and multiwavelength products exists for MAGIC: currently, only a page with fits files is available (http://vobs.magic.pic.es/fits/)
- Other collaborations: VERITAS has archive publicly accessible on HEASARC.
- H.E.S.S.: built an online repository containing fits file and list of information in each paper.













#### Thesis project: contribute to make the archive OpenAccess compliant, use it for population studies

- Two-step project: first part would be working on putting available files (SEDs, light curves) in a common format that can be used by everyone, as well as generating publicly accessible Jupyter codes for plotting and data analysis
- The files will also be made accessible by public tools for the multi-wavelength analysis of blazars, such as the Open Universe VOU-Blazars one (<u>https://sites.google.com/view/ou4blazars</u>), the SSDC-ASI TeGeVCat (<u>https://www.ssdc.asi.it/tgevcat/</u>),Firmamento (<u>https://firmamento.hosting.nyu.edu/data\_access</u>), MMDC (<u>https://mmdc.am/</u>)...
- These tools allow one to produce spectral energy distributions of a source of interest (which can be a known blazar as well as a new candidate target), and model them to get information on the SED properties (synchrotron peak location, variability...)
- Firmamento already includes information on CTA expected sensitivity as well: powerful tool to make predictions for CTA (both on single sources and on surveys).
- Other projects (TeV luminosity function, IR-variability vs synchrotron peak) are available.
- Thesis in collaboration with Università di Padova (Prof. Michele Doro; Dott.ssa Elisa Prandini)

## Thank you!

.....

E